
 

 

 
Abstract— Effective cost reduction of manufacture 

structures can be achieved by applying mathematical methods 
of optimal design. This article presents the determination of 
optimal geometrical sizes of three-layer sandwich beams with 
profile. It reviews the formulation and design constraints of the 
objective function. The objective function includes the 
manufacturing costs, while the design constrains refer to the 
maximal normal and shear stresses, the maximal deflection, 
damping of vibration and geometrical sizes. It examines the 
changes of the optimal geometrical sizes and that of the 
minimum objective function as a function of loading. 
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I. INTRODUCTION 

HE sandwich structures (beams, panels and shells) 
are widely using of different area of industry and 

economy in this days. Their advantage is that in different 
shape relative fast could make and assemble. Their small 
weight they are very good at the vibration dampers and 
heat isolation. The outside skins (shells) could make with 
profile plates or panels so their stiffness are significantly 
increase.  

II. THE OBJECTIVE FUNCTION AND DESIGN 
CONSRAINS 

In the mechanical engineering practice the 
optimization process is divided into process and 
structural optimization. The structural optimization we 
can divide structural topology, shape, sizing, and material 
optimization. The optimization of structural topology is 
happened by truss-girder in the first place when have to 
define the elements (rods) of girder a good place in the 
space. At the shape optimization it is our aim that the 
shape of structure is followed the expected shape of the 
design constrains (e.g. the arms of tree are the most thick 
where the bending moment and shear forces are the 
largest). Topology optimization of trusses in the form of 
grid-like is a classical subject in structural design. The 
study of fundamental properties of optimal grid like 
continua was pioneered by Michell, 1904, but this 
interesting field has only much later developed into what 
is now the well-established lay-out theory for frames and 
flexural systems [2]. 

The optimization of geometrical sizes are the most 
frequently tasks when have to decide the optimal sizes of 
cross-section. By the optimization of material 
consumption are the same as the optimization of 
structural topology, but in this case have to look for the 
optimal material setting in order. The optimization of 
material we use often to the designing of composite 
material. The process optimization is used by the 
technological process to decide the optimal parameters of 
process [1]. We show the optimal design of the simply 
supported sandwich beam with uniformly distributed 
load, Fig. 1. The length of beam is l. We use a sandwich 
beam which consists of two aluminium/steel rectangular 
hollow sections (RHS) and a layer poliurethane foam (h2) 
glued between them. 

 

 
Fig. 1.  The construction of model and the cross-section of 

sandwich beams. 
 

A. Formulation of objective function 
The objective function consist of the following 

elements: cost of the cutting of the hollow section (Kd), 
cost of the cleaning of interface of core (Kc), the costs of 
foam and its working time cost (Kf) and the material costs 
of hollow section (Km). So the costs are [2], [5], [6], [7]. 
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The cost of cutting of the hollow sections 
 

 
d d d

K n k ,   (2) 
 

where nd number of cuttings, kd specific cost of 
cutting (HUF/cutting). The cleaning cost of interface of 
core is 
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c f k t

K k A ,   (3) 
 

where kfa  the cleaning costs of the surface by hand 
(HUF/m2) and At is the cleaned surface (m2). 
The costs of core with using the equipment foam 
manufacturer we can calculate 
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where et  preparation time (min), 2h  thickness of 

polyurethane foam [mm], hV  volume flow of 

polyurethane foam (m3/s), kit  operating time of machine 

(min), b  the width of hollow section [mm], mk  specific 

labor cost (HUF/min), afoamk  specific amortization cost 

of machine (HUF/min), foamk  specific material cost of 

foam (HUF/m3). 
The material cost of hollow sections  
 
 

a fa
K k l,  (5) 

 
where kfa the specific material cost per unit length 

(HUF/m). 

B. Formulation of constraints 

1. The constraint for the maximal deflection of beam 

The maximum value of deflection [3] 
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where 
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where A the cross section area of closed section, v is 

the thickness and h is the height of hollow section, 1I  the 
second moment of area for closed section, E modulus of 
elasticity of facings, G shear modulus of core, p 
uniformly distributed load (N/mm), 
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where  
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where φ = 0. 
The deflection constraint is given by  
 

 
max adm

w w ,  (11) 
 

where wadm = l/300 is the admissible deflection of 
beam. 

2. The constraint for the maximal shear stress in the 

core 

The maximal shear stress in the core can be described 
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,    (13) 

 
where τadm is the admissible shear stress [3]. 

3. The constraint for the maximal normal stress in the 

facings 

The maximal normal stress in the facings can be 
described 
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max adm
   , (16) 

 
where adm  is the admissible normal stress. 

4. The constraint for the loss factor of the sandwich 

beam  

The loss factor of three-layered sandwich beam can 
be expressed 
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where η2 is the loss factor of polyurethane foam [-], 
G2d is the dynamic shear modulus of foam, C=2 for 
simply supported beam (-).  The loss factor of sandwich 
beam is expressed [5] 

 
 ηmin  ≤ η, (20) 
 

where ηmin is the minimal value of loss factor for the 
sandwich beam. 

5. Geometrical constraints  

 

 h2min ≤ h2, 

 h2 ≤ h2max. (21) 
 

III. NUMERICAL DATA AND RESULTS 
In the next we show the answer of the problem 

definition and we are studying how change the optimal 
thickness of foam (h2) and minima of the objective 
function (K) in the function of uniformly distributed load 
(p). We have taken count to the facing aluminium and 
steel and the length of beam were 1 meter and 2 meter. 
Given data: nd  = 4;  kd = 80 Ft; kfk = 50 HUF/m2; te = 5 
min; tki = 2 min;  km = 70 HUF/min;  kafoam = 10 
HUF/min; kfoam = 2600 HUF/m3; kfa = 819 HUF/m3; l = 

1000 mm, respectively 2000 mm; E = 70 GPa for 
aluminium, E = 210  GPa for steel ; G = 3,1 MPa ( the 
measurement of G shows the Fig. 4.); v = 3 mm;  b = 30 
mm; τadm = 0,25 MPa; σadm = 120 MPa for aluminium, 
σadm = 200 MPa for steel; η2 = 0,22; G2d = 0,69 MPa; C = 

2, h2min = 20 mm, h2max = 120 mm, kfa=819 (HUF) in 
case of aluminium 30x30x2 mm,  1291 (HUF) in case of 
aluminium 30x30x3 mm, 430 (HUF) in case of steel 
30x30x2 mm. 

 

Fig. 2.  Changing of the thickness of foam in the function of 
uniformly distributed load. The material is 

aluminium and l is 1000 mm. 
 
The minima of the objective function (K) has grown 

in the examined domain only in small degree. The 
counted results of foam thickness show the Fig.2., Fig.3., 

Fig.6. and Fig. 7. and the counted costs show the Fig. 8. 
and Fig. 9. The bending of beam shows the Fig. 5. 

 

 
Fig. 3.  Changing of the thickness of foam in the function of 

uniformly distributed load. The material is 
aluminium and l is 2000 mm. 

 

 
Fig. 4.  Measuring of the G shear modulus of core 

 
Fig. 5.  Measuring of the bending of beam 

 
There is contradiction between stiffness and vibration 

damping of load-carrying structures. Very stiff structures 
have low damping capacity, and a high damping ratio can 
be achieved by permission of some displacements, which 
decrease the stiffness. A simple welded steel or 
aluminium-alloy beam has a very small vibration 
damping capacity, thus, in several applications a 
sandwich beam may be used, which consist of two 
aluminium rectangular hollow section and a layer of high 
damping material (e.g. rubber) glued between them [2].  
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Fig. 6.  Changing of the thickness of foam in the function of 

uniformly distributed load. The material is 
steel and l is 1000 mm. 

 

 
Fig. 7.  Changing of the thickness of foam in the function of 

uniformly distributed load. The material is 
steel and l is 2000 mm. 

 

 
Fig. 8.  Changing of the costs in the function of uniformly 

distributed load. The material is 
steel and l is 2000 mm. 

 
In the optimization procedure the unknown dimension 
was the height of foam and we changed the sizes of 
rectangular hollow sections. The objective function was 
the minima of costs. The measurements show that, to 
reach a high structural stiffness and a high damping 
capacity. Using a god damping core, the loss factor of the 
beam can be large. In this sense the sandwich is better 
solution, than the simple aluminium beam. 

 
Fig. 9.  Changing of the costs in the function of uniformly 

distributed load. The material is 
aluminium and l is 2000 mm. 

 
The simple aluminium beams are the most expensive 

ones, since their loss factor is very small and the dynamic 
force at resonance is very large. 

IV. CONCLUSION 
In this work we showed briefly the design optimization 

of the three-layer sandwich beam with profile in case of 
mechanical constrains. We determined the optimal 
thickness of foam core and the changing of minima of 
cost function in the gear of loads. 
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